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A simple model is proposed to predict the ultimate tensile strength of fibre-reinforced 
composites when the failure is governed by fibre debonding. The theoretical analysis is based 
on the concept of fracture mechanics where the debonded zone is considered as an interfacial 
crack. The analysis is first applied to the classical pull-out test in order to determine the 
specific work of interfacial cracking. Using this value, the uniaxial tensile strength of the 
composites can be predicted from an approximate, closed-form equation proposed here. The 
theoretically predicted results seem to compare favourably with experimental values for fibre- 
reinforced cement based composite. 

1. I n t r o d u c t i o n  
In many fibre-reinforced composites, the failure 
(defined as the maximum load-carrying capacity) is 
dominated by the debonding of fibres which occurs 
after transverse fracture in the matrix. Failure of cord- 
rubber composites by pull-out fracture has been dis- 
cussed by Gent et al. [1]. For failure of Portland 
cement-based composites which is the subject of this 
paper, the fibre-matrix interface is comparatively 
weak, and as a result fibre debonding plays a critical 
role. 

Experimentally observed average tensile stress- 
strain responses of Portland cement composites 
reinforced with randomly distributed, short, steel 
fibres [2, 3], glass fibres [3] and polyproplene fibres [4], 
are shown in Fig. 1. The response of these composites 
subjected to monotonically increasing uniaxial tensile 
loading is linear until the stress aproximately equals 
the tensile strength of the unreinforced matrix. The 
linear behaviour is followed by: (i) non-linear 
behaviour, (ii) the peak response (termed failure), and 
(iii) the post-peak response, as seen in Fig. 1. One or 
more transverse cracks are often observed before the 
peak of the stresss-strain curve [2, 4]. The post-peak 
response is generally dominated by widening of a 
single major crack [2]. As a result of these localized 
deformations, the strains are non-homogeneously dis- 
tributed and the definition of the stress-strain curve in 
the post-peak region is no longer unique [5, 6]. 

Based on a larger number of experimental results, 
empirical relations have been proposed to predict the 
failure stress of fibre-reinforced cement-based com- 
posites (FRC). Such equations relate the failure stress 
to the volume fraction of fibres, aspect ratio of fibres 
and the bond strength of the fibre-matrix interface 
[7-9]. Such empirical observations indicate the import- 
ance of debonding and pull-out resistance of fibres in 
determining the failure of stress of the composites. 
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2. Some previous theoretical models 
Theoretical models relating the properties of fibre, 
matrix and their interface to the failure of the FRC 
composite have been suggested. For example, a model 
to predict the occurrence of multiple transverse crack- 
ing has been proposed by Aveston et al. [10]. Their 
model assumes a constant shear stress distribution at 
the fibre-matrix interface. A strain relief model 
developed by Irwin for unreinforced matrix has been 
proposed for FRC composites [11, 12]. It is assumed 
that the strain energy released by formation of a trans- 
verse Griffith crack is contributed only by an elliptical 
region surrounding the crack. For a crack of a given 
length, energy contributed by this elliptical zone is 
compared with the energy required to form new crack- 
ed surfaces. The elastic strain energy in the matrix and 
the fibres, and the energy absorbed in debonding 
(assuming a constant shear stress at the interface and 
friction type of bond), are included in the analysis with 
some simplfying assumptions regarding the strain dis- 
tribution away from the crack. 

It is generally difficult to determine, theoretically as 
well as experimentally, the shear stress (bond stress) 
distribution at the interface and the strain field in the 
matrix surrounding the fibre during the debonding 
process [13-22]. However, some approximate theor- 
etical solutions which provide a basic understanding 
of the problem have been obtained. For example, 
Sternberg and Muki [13-15] have proposed an ana- 
lytical solution of the classical pull-out problem (a 
single fibre being pulled out from a semi-infinite 
matrix). They equate the presence of the fibre with a 
distribution of disc loads in the matrix, and they 
formulate and solve the corresponding integral 
equation. Phan Thien and co-workers [16-19] equate 
the presence of a slender fibre with a distribution of 
Mindlin forces in the matrix using slender-body 
theory. 
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Figure 1 Experimentally observed tensile behaviour of  fibre-reinforced concrete composites made using (a, b, c) steel fibres of  different types 
(from Shah, Stroeven, Dalhuisen and van Stekelenburg [2]); (d) smooth  steel and glass fibres (from Shah and N a a m a n  [3]); (e) monofilament 
polypropylene fibres with inset showing response of  fibrillated polyproplene fibres (from Baggot [4]). (a) Smooth,  straight steel fibres with 
Vf = 1.23%, l = 25ram, 2a = 0.38mm. (b) Hooked ends, Vf = 0.90%, l = 30mm,  2a = 0.40mm. (c) Enlarged ends, Vf = 1.40%, 
l = 50mm,  2a = 0 .75mm (d) Smooth,  straight steel fibres, Vf = 2%, l = 25mm,  2a = 0 .43mm; glass-fibres (bundles) Vf = 2%, 
l = 13 mm; ( × ) f i r s t  crack, ( * ) m a x i m u m  load. (e)Polypropylene monofilaments,  Vf = 5%, l = 26 ram, d = 130 #m; inset, fibrillated 
fibres, l = 6 ram, average thickness 72 pro. 

To evaluate the results of  single-fibre pull-out tests 
• and to determine the failure load on composites an 
approach based on fracture mechanics is proposed 
here. No assumption regarding the distribution of 
shear stresses at the interface is explicitly made. In the 
analytical model, the zone of debonding is treated as 
an interfacial crack. Failure modes such as fibre yield- 
ing, fibre fracture and further transverse matrix crack- 
ing are disregarded. It is assumed that a transverse 
crack has already been formed and that the debonding 
starts at the transversely crack matrix surfaces. 

3. Fracture  mechanics  approach 
Consider a linear elastic body with a crack (Fig. 2). 
The surface of the crack Q is determined by a single 
parameter, (5, such that 

fl  = f~(6) (1) 

The displacements are described on a part of  the 
boundary of the body and the body is loaded with a 
single force P. The displacement of  the boundary at 
the force P in the same direction as the force is called 
u and is governed by 

u = C P  (2) 

where C is the compliance of  the body. The com- 
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pliance is, among other parameters, a function of the 
crack size: 

C = C ( a , . . . )  (3) 

It can be shown that the total energy released (work 
done by the force minus the change in strain energy of 
the body) when the crack grows an infinitesimal 
amount  ~a is given by 

1 ~ C  
_ _  p2 d6 = energy released (4) 
2 3(5 

A simple Griffith-type criterion for the crack-growth 
load, P , ,  can then be written as 

Load P 
Displacemen 

rfff/27~- 1//H/1/ 

Figure 2 Definition of  some parameters used in the problem. 
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Figure 3 The classical fibre pul l -out  p roblem.  

P 

1 ~ C  dO 
2 03 (Pcr)2 - d3 71 (5) 

where 7i is the specific work of  fracture. This criterion 
will be used to determine 7~ from the single-fibre pull- 
out test and to determine the failure load of  FRC 
composites. 

4. Single-fibre pull-out test 
The classical fibre pull-out test is shown in Fig. 3. The 
debonding zone b is considered stress-free, at least 
compared to the bonded part of  the interface. This 
means that the debonded zone can be characterized as 
an interracial crack with a crack length b (b < l) and 
a total crack surface of  2(2;g ab). The fibre is assumed 
to be circular with diameter 2a and length l and linearly 
elastic with Young's modulus Ef and Poisson's ratio 
yr. The matrix is also considered linearly elastic with 
the corresponding properties E m and Vm. 

The maximum pull-out will be reached when the 
interfacial crack growth criterion (Equation 5) is 
satisfied. That  is, for the pull-out problem, using b as 
a crack length, Equation 5 becomes 

1 3C 
2 fib (Per)2 = 27za27i (6) 

where 7~ is the specific interfacial work of  fracture. 
To the authors'  knowledge no exact solution is 

available for C = C(b . . . .  ). However, some useful 
information about such solutions can be obtained 
from the analysis of  the perfectly bonded fibre case 
(b = 0) performed by Phan-Thien and co-workers 
[16-19]. They have developed approximate solutions 
using an asymptotic analysis under the assumptions 

Em \ l /  In >> 1 and 1 >> a (7) 

and 

- -  In ,~ 1 " and I>> a (8) 
Em 

corresponding respectively to either very stiff (rigid) or 
elastic (long) fibres. For  these two cases they deter- 
mined the following relationship between P and the 
displacement u of  the fibre at the free edge of  the 
matrix (considered as an elastic half-space): for rigid 
fibres 

vml ( ) 1 
U --  Em ~-l P ( 9 )  

while for elastic fibres 
2 l - - v m  1 

u = . - -  P (10) 
Em ~a 

In addition, Phan-Thien [16] has also determined the 
displacement in the fibre direction of  a rigid fibre of 
length l embedded in an infinite matrix and loaded in 
the fibre direction. This solution reads 

1 + V m l n ( / ) l p  (11) 
U --  Em 7zI 

4.1.  Elastic f ibre c a s e  
If the fibre is elastic (Equation 8 satisfied) then Phan- 
Thien has shown that the compliance of  the fibre- 
matrix system is independent of  the embedded length 
(see Equation 10). This must also be the case when 
b # 0 as long as (l - b)/a >> 1. If  it is assumed that 
the interfacial crack has grown some distance large 
enough for the influence of  the free edge of the matrix 
to be ignored, then the displacement u of the 
debonded fibre can be expressed as 

b 
u = G(Em, Vm, a)P + Efrca------TP (12) 

where G is independent of  b and l. Substituting the 
value of  compliance obtained from Equation 12 in 
Equation 5 we can obtain the interfacial crack growth 
criteria as 

1 (Pot) 2 
= 2;g a27i (13) 

2 Efrca 2 

Note that Per is independent of b, which means that a 
long elastic fibre will eventually be pulled out with a 
constant load. 

4.2.  Rigid f ibre  c a s e  
If the fibre can be considered rigid (Equation 7 satis- 
fied) and if it can be assumed that b/a is large enough 
and ( l -  b)/a ,> 1, then the compliance of the 
debonded fibre-matrix system can be expressed as 

1 +  Vm in ( ~ _ )  1 
u = Em ;g(I b~-~ P (14) 

Note that Equation 11 for a rigid fibre embedded in an 
infinite matrix was used to derive Equation 14, since 
the fibre is assumed to be rigid and the free-edge effect 
is assumed negligible. It is now possible to derive the 
expression for the critical pull-out load as 

] ,  
2 ;gE m In - 1 (l - b) = (Pcr)2 

= 2;g a27i (15) 

Equation 15 predicts that the crack growth for the 
rigid fibre case is unstable, since Per is a decreasing 
function of  b. In other words, using a stiffer fibre with 
respect to the matrix or a shorter embedment length, 
one approaches the rigid case and consequently an 
unstable debonding process. 

Equations 13 and 15 offer a different approach to 
evaluate the standard pull-out test. Usually the 
strength of  the interface is characterized by a criterion 
in terms of  shear stress. Since the precise distribution 
of  shear stress along the interface is difficult to deter- 
mine, an average value is often determined from the 
assumed shear distribution and the maximum pull- 
out load. Use of Equations 13 and 15 enables the 
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characterizing of bond strength in terms of specific 
work of fracture. 

Note that the use of Equations 13 and 15 to 
interpret the pull-out test requires specimens with an 
initial interfacial crack of a well-defined length. This 
initial crack must be long enough to ensure that 
surface effects can be ignored. 

5. Uniaxial tensile specimen 
To predict the tensile strength of fibre-reinforced 
cement-based composites whose ultimate strength is 
dictated by the strength of the relatively weak 
fibre-matrix interface, the analyses described for the 
single-fibre pull-out case have been applied. The speci- 
men considered here is shown in Fig. 4. It is assumed 
that (a) one macroscopic, transverse matrix crack is 
formed; (b)interfacial cracks have initiated; and 
(c) the fibres are continuous (that is, sufficiently long 
in the sense of Equations 7 and 8) and aligned in the 
direction of the applied tensile stress. First, the case of 
elastic fibres (Equation 8) is considered. 

The length of the specimen is 2l and the length of the 
uncracked (bonded) region is 2(/ - b). Let the cross- 
section of the specimen be A and the volume fraction 
of fibres Vr. The compliance of the specimen shown in 
Fig. 4 can be expressed as 

C = ~ +  ( l -  b)~+ (16) 

where the first term describes the compliance of the 
debonded zone and the second term describes the 
compliance of the bonded region, with Ec defined as 
the Young's modulus of the composite material; by 
Rule of Mixtures Ec = ErVf + ( 1 -  Vr)E m . The 
third term H describes the compliance of the zone 
where the interfacial cracks end, and for simplicity it 
is assumed to be independent of b. The total interfacial 
crack surface Q can be written as 

f~ = 4bAVr 2 (17) 
a 

Using once more the criterion proposed in Equation 5, 
the following relationship for the interfacial crack 
growth and the tensile stress (%0 is obtained: 

2A 'V~Ef /~o O'er = ~)i 

== 

% 

O 

. "  (b) O'cr> O" u 

,,. 
\ 

(o) O'cr< ~u 

0 Strain 

Figure 5 Possible model predicted solutions for composite tensile 
stress-strain behaviour. 

o r  

%r = 2Vf \E¢ -~ VrEf (18) 

Note that if a~ is less than the tensile strength ou of 
the unreinforced matrix (which is approximately the 
same as the limit of proportionality for the commonly 
employed FRC composites), then the stress-strain 
curve labelled (a) in Fig. 5 is observed for the com- 
posites. On the other hand, if ac~ calculated from 
Equation 18 is greater than o-, then the stress-strain 
curve labelled (b) in Fig. 5 is predicted from the 
proposed analysis. Both of these types of curves have 
been reported for FRC composites (Fig. 1). 

In the case of rigid fibres, the compliance of the 
specimen shown in Fig. 4 and the tensile stress at the 
critical growth of interfacial cracks can be written, 
respectively, as 

, + .  1 
C = 2 ~rEm In (l - b) IrA (19) 

and 

l-b 
act = 2 Vr - -  

a 

{, 
Comparing Equation 18 with Equation 20 it can be 

seen that for stiffer or shorter fibres the stiffness of the 
matrix and the length of the fibres become important 
in determining aor and that the crack propagation 
tends to be unstable (maximum value of G~r obtained 
when b = 0). 
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Figure 4 Idealizea tensile specimen considered for the composite 

model. 

6. Some comparisons w i th  
exper imental  results 

To examine the applicability of the analysis proposed 
here, the prediction of the tensile strength of the com- 
posite was compared with the observed data for steel- 
fibre reinforced concrete. 

The length and diameter of the most commonly 
used steel fibres are approximately 25 and 0.25 mm, 
respectively. Can these fibres be considered sufficiently 
long for the proposed analysis? The results of Sternberg 
and Muki [13-15] for pull-out of elastic fibres from 
elastic matrix with El~Era ~< 8 show that when the 
ratio of embedment length to radius is about 20, then 
the fibre cannot "feel its own end". That is, making 
the fibre longer would make no difference in the cam- 
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pliance calculations. For the stiff fibre case much 
longer fibres are usually needed. However, Phan- 
Thien et al. [!9] have shown that for v m ~ 0.1, l/a 
values of about 50 are sufficient to ensure that 
Equation 7 is reasonably good. Thus, it can be con- 
cluded that one of the assumptions of the analysis 
(that fibres are long compared to their radius) is 
acceptable for steel fibres with an aspect ratio (//2a) 
greater than about 25. 

For steel fibres the ratio Er/Em is approximately 10. 
For this ratio and for l/2a = 30 to 100, the quantity 
Ef/Em(a/l)21n (21/a) is less than 10 -2. Thus, steel fibres 
should be treated as elastic fibres in the sense of 
Equation 8. 

Naaman and Shah [23] have conducted pull-out 
tests on straight and smooth steel fibres. They 
observed that the average peak pull-out loads (Per) for 
fibres with embedment length about 13ram and 
diameters 0.4, 0.25 and 0.15mm were 42, 26.5 and 
6.20 N. For these values of Per, using Equation 13 the 
values of 7~ = 13.3, 21.7 and 5.5Jm -2 are obtained. 
Using these values of 7~ and for Vr = 0.01, values of 
act = 3.51, 5.67, 3.68MPa are obtained by using 
Equation 18. These values of tensile strength for 
cement-based matrix reinforced with aligned fibres 
appear reasonable ([2, 3, 9] and Fig. 1). Also, note that 
the value of ~ =- 6 to 22Jm -2 for the steel f i b r e  
matrix interface seems reasonable when compared to 
the values of 20 and 60 J m -2 observed for unreinforced 
matrix in Mode I crack propagation [5, 24]. 

It should be noted, however, than no initial crack 
was intentionally introduced in the tests reported [23], 
which means that the use of Equation 13 is not strictly 
correct. Since the critical pull-out load is larger, when 
b is not large enough to ensure that surface effects can 
be ignored, the values of 7i found above may be too 
large. In the light of these considerations it is interest- 
ing to investigate the results reported by Burakiewicz 
[25], who made pull-out tests with straight and smooth 
steel fibres with embedment length 30mm and 
diameter 0.38ram and an initial crack of 5mm. 
Burakiewicz found peak pull-out loads of about 30 N, 
which gives 7i = 8.31 J m -2 when using Equation 13 
in agreement with the considerations mentioned 
above. 

7. Conclusions 
An approximate but simple model is proposed to 
predict tensile strength of fibre-reinforced cement- 
based composites whose failure is governed by the 
strength of the fibre-matrix interface. The proposed 
analysis is based on the concept of fracture mechanics; 
it treats debonding as an interfacial crack and yields a 
closed-form equation to predict the ultimate strength 
of the FRC composite. The fibre-matrix interface 
strength is characterized in terms of specific fracture 
energy, and can be determined from the value of the 
maximum pull-out load obtained from single-fibre 
pull-out tests using the approach suggested here. 
There are several simplifying assumptions made which 
should be critically examined using a numerical analy- 
sis. These include (i) whether in a pull-out test, the 
interfacial crack is sufficiently long so that the free- 

edge effect is negligible; (ii) whether the cracked inter- 
face is stress-free; and (iii) whether the term H in 
Equation 16 is independent of b. 
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